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Rate processes including change of phase are modelled analytically for a half- 
space porous substance exposed to a jump in external temperature. The model 
predicts, in a closed form, the pressure build-up and the rate of evaporation of 
volatiles from a porous matrix. It assumes two distinct regions separated by a 
moving interface where the change of phase takes place. One region maintains its 
initial concentration of volatiles while the second is devoid of volatiles. Different 
thermophysical properties are considered for the two regions. The model was 
applied for the evaporation of moisture from oil-shale. Results are given in a 
parametric form 

K e y w o r d s :  evaporation, rate processes, oil shales 

Growing interest in the utilization of oil shales has led to 
an attempt to understand the transport phenomena in 
retorting and combustion processes. These processes 
differ vastly from those encountered when either liquid oil 
or coal are burned. The basic difference stems from the 
physical structure of the shale, an inorganic matrix in 
which the kerogen (the organic material) is embedded. 
Thus, during the processing of oil shale particles, their 
external shape is preserved and product gases and organic 
matter diffuses through the small pores of the matrix. 

Existing shales contain various, non-negligible, 
amounts of water. When shale particles are introduced 
into the cumbustor or retorting facility, they experience 
an instantaneous jump in surface temperature. Water 
gradually evaporates and flows out from inside the 
particle. Evaporation within the oil shale particle is 
assumed to be at local equilibrium, ie the pressure at the 
evaporation interface is related to the temperature ac- 
cording to the saturation curve. When the shale has a low 
permeability coefficient, high build-up pressures might 
occur, resulting in fracture of the inorganic matrix and, 
hence, change the external shape of the particles. Other 
processes within the oil shale particle, such as pyrolysis, 
gasification, combustion etc are affected by diffusion as 
well as kinetic rate of reaction. However, the solution of 
the diffusion only, such as applied to the drying process, 
would be valuable in providing a lower bound for the time 
needed to complete the process. 

The object of this work is to predict rates of drying 
of oil shale particles and the pressure build-up inside the 
particles as a function of various non-dimensional para- 
meters based on thermo-physical properties of oil shales, 
water hold up and pertaining external conditions, ie initial 
and reactor temperatures and the external pressure. The 
proposed solution is not limited to oil shales but can 
handle any infinite kinetic rate process that occurs in a 
porous matrix. 

Luikov 1, in a recent review paper, has described a 
comprehensive mathematical model for the process of 
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drying porous media. More recently several workers 2-7 
have been looking at restricted cases which could be 
solved analytically. In a recent paper by Cross et al, an 
attempt to predict the pressure build-up in a porous half- 
space is made. Their basic assumptions were: (a) a distinct 
moving interface exists between the wet region and the 
dried region; (b) heat flows through the medium by 
conduction only and no heat is convected by the out- 
flowing vapour; (c) the vapour is compressible and obeys 
the ideal gas law. Cross et al also assumed that the 
difference between the external and the evaporation 
interface temperatures is fixed (20°C) and that the thermal 
diffusivities of the dry and the wet regions are equal. 

In our analysis, the rate of interface motion and the 
pressure build-up will be calculated without requiring a 
priori assumptions for the value of interface temperature 
and diffusivities ratio. Indeed, the interface temperature is 
calculable by the model itself. Since compressible so- 
lutions are normally much more difficult to obtain, 
incompressible solutions are also presented for com- 
parison purposes. 

S t a t e m e n t  o f  t h e  p r o b l e m  

When the surface of a slab of oil shale is exposed to a high 
temperature, heat is transferred into the slab. The liquid 
within the slab evaporates whenever the temperature 
reaches local boiling conditions. 

The model assumes that two distinct regions exist: 
region 2 is devoid of liquid while region 1 has the original 
liquid content. Therefore a definite interface exists be- 
tween the two regions with discontinuity in liquid content. 
Initially, the whole slab is in region 1 but with evap- 
oration, the interface moves into the slab, thus increasing 
region 2. The instantaneous location of the interface is 
denoted by s(t). The vapour generated at the interface 
flows through the porous material of region 2 to the slab's 
boundary. The rate of vapour flow, described by Darcy's 
Law, is controlled by the pressure gradient and the 
permeability of the porous region. This flow results from 
the vapour generation at the interface due to heat transfer 
from the slab's boundary. 

Saturation pressure at the interface is related to the 
local temperature by Clapeyron's equation. 
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Mathematical presentation 
The governing field equations will be presented for the 
two regions. For  region 1, where no mass flow occurs, the 
only relevant equation is that of heat conduction, namely: 

O T1 OE T1 D1CI-~-=K1 ~ (1) 

where Pl, C1 and K 1 are the density, specific heat and 
thermal conductivity, respectively. 

For  region 2, both heat and mass transfer must be 
considered. The local temperature of the vapour is 
assumed identical to that of the matrix. The heat transfer 
equation is: 

O T  2 02T2 
p 2 C 2 ~  - = K  2 ~ x  2 (2) 

where the convection of heat due to vapour flow was 
neglected. The continuity equation describing mass con- 
servation of the vapour is: 

8pG 8(PcuO =0  (3) ~ - ~  & 

where e is the porosity of region 2, and Pa and u a are the 
gas density and gas apparent velocity respectively. The 
momentum equation is represented by Darcy's Law: 

UG = # \ Ox ] (4) 

where P~ is the local pressure and p and F are the gas 
viscosity and the matrix permeability, respectively. 

Two cases for the equation of state of the vapour 
will be considered: a non-compressible vapour where: 

PG = Po = const. (5a) 

and compressible ideal gas: 

PG (5b) 
P 6 - R  T G 

Initial conditions 

Initially only region 1 exists where the liquid content and 
temperature are uniform so, mathematically: 

T1 (x, 0) = T~ (6) 

(2)l(X , 0) = O l ( X  , t )  ---- (.0 (7) 

where 091 is the volume fraction of the liquid which is 
assumed to remain constant throughout the process in 
region 1, while region 2 is devoid of liquid, namely o~ 2 = 0. 

Boundary conditions 

The temperature at the surface of the slab is assumed to 
equal the outside temperature for all times t > 0: 

T z (0, t) = To (8) 

The temperature across the interface, x = s, is continuous, 
namely: 

7"1 (s, t)= Te(s, t) ~ T~ (9) 

The difference in heat conduction fluxes is equal to the 
latent heat of evaporation (denoted by L): 

fST,'~ K [8T2\ ds 

The conservation of mass at x = s yields: 

ds 
(pLtO - -  p G g ) ~  = - -  PGUG (11) 

Finally, the temperature and the pressure at the interface 
are related by the Clapeyron equation which, when 
integrated for steam, yields the close approximationS: 

~--Pcr 0 al +a20+a3Oa +a404 (12) 
l°gl°k'~ = T~ 1 +asO 

where: 

Per=221.1 bar=22.11 MPa 
T~, = 647.4 K 
0= T . -  T~ 
al =3.34613 
a2 =4.14113 x 10 -2 
a 3 =7.515484 x 10  - 9  

a4 =6.56444 x 10 -11 
a5 = 1.379448l x 10 -2 

N o t a t i o n  
al,a2,aa,a4,a5 Coefficients (Eq (12) 
A1,A 2 Coefficients (Eqs (18), (19)) 
Cj Specific heat 
Q Porosity parameter (Eq (20)) 
H Permeability parameter (Eq(22)) 
Kj Thermal conductivity 
K Thermal conductivity ratio KffK2 
L Latent heat 
Pj Pressure 
R Gas constant 
s(t) Instantaneous location of the interface 
t Time 
T~ Temperature 
uc Gas apparent velocity 
x Coordinate, normal to surface 

(~ll~z) uz 
~j Thermal diffusivity 
F Permeability 

e Porosity 
~/ Similarity parameter (Eq (16)) 
2 Interface locator parameter (Eq (17)) 
/~ Gas viscosity 
p~ Density 
0 ~ r - ~  
o~ Volume fraction of liquid 

Subscripts 
1 

2 
G 
L 
S 
O 
cr 
i 

Region 1, with initial concentration 
volatiles 
Region 2, devoid of volatiles 
Gas 
Liquid 
Interface 
External, ambient 
Critical point 
Initial 

of 
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The second boundary condition for region 1 is: 

~(~ , t )=  
for a semi-infinite slab. 

(13) 

Solut ion  for  semi in f in i te  case 

The general solution of the heat equation for region 1 (Eq 
(1)) which satisfies the boundary condition at infinity (Eq 
(13)) is: 

T~ = T~ + a  1 erfc (q) (14) 

The solution for region 2, which satisfies the boundary 
condition at x = 0  (Eq (8)) is: 

T2 = To + A2 erf  (q(o(1/o(2) 1/2) (15) 

where q is a similarity parameter defined as: 

x 
q = 2(~1t)1/2 (16) 

and Ax, A2 are parameters to be determined. The motion 
of the interface is taken, and later justified, to be pro- 
portional to (cqt)l/2: 

S = 2J.(0~ 1/)1/2 (17) 

where 2 is the interface locator parameter to be 
determined. 

A~ and A2 are determined as a function of 2 by 
introducing the temperature profiles (Eqs (14) and (15)) 
and the interface location (Eq (17)) into the boundary 
conditions (Eqs (9) and (10)): 

1 - ~Ti[1 - Q2e a2 erfc(2)] 
7"0 

A , =  - T  O (18) 
erf(20t) + Kerfc(2)exp[22(1 - ~2)] 

and: 

l -  l + Q  2ea'%rf(2e) 

A2 = To (19) 

erfc(~) + ~r f ( ,~ )exp[2 ' (~-  1)] 
ct 

where ~, K and: 

= x / ~ - t o L  PL (20) Q 
(~111 Pl 

are known quantities. 
The vapour velocity in region 2 is determined from 

continuity (Eq (3)) and the boundary condition (Eq (11)). 
The local time variation of the vapour density within 
region 2 can be neglected in Eq (3) from order of 
magnitude considerations, even for the case of compre- 
ssible vapour, (Eq (5b)): 

u~ = P o , , /  t 

,~, PLco2V/~I I__ (21) 
- -  P6 J t  

since PL >> PG" 
The pressure field in region 2 depends on the type 
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of equation of state that is employed. For non- 
compressible vapour (Eq (5a)) it is: 

PG/Po = 1 +2Hq (22a) 

For 'ideal gas' compressible vapour (Eq (5b)) the pressure 
is: 

(PG/Po)2=I +22Hq{1 +~-0~ Ierf(~/ct) - 

- 1 / _ ( 1 -  e-~2"~)]} (22b) 

where H is a nondimensional parameter: 

2#~1 oJ(pL -- P0) 
H -  

FPoPo 

and Po and Po are the ambient density and pressure, 
respectively. The pressure at interface, Ps, is then: 

PJPo = 1 -t-,~2H (23a) 

for the incompressible vapour (Eq (5a)) and: 

(Ps/po)2=l + 222H{1 + ~-ol [erf(2a)-  

1 - ~ ( 1 -  e -~2) ]}  (23b) 

for the 'ideal gas' vapour (Eq (5b)). 
The temperature at the interface is calculated from 

Eq (14) or (15): 

T~= T~ +A 1 erfc(2) (24) 

It can clearly be seen that the interface temperatu re 
stays constant throughout the process and depends only 
on the phenomenological coefficients. Its value can be 
calculated once the interface locator parameter is 
determined. 

Introduction of the expressions for the interface 
temperature (Eq (24)) and the pressure (Eq (23a) or (23b)) 
into the Clapeyron equation (Eq (12)), results in a 
transcendental algebraic equation for 2, for both the 
incompressible and the compressible cases. The explicit 
solution for 2 can easily be derived when a bi-section 
computer program is employed for various values of the 
seven non-dimensional parameters ~, K, Q, H, To/T, 
Pcr/Po and T~JT/. It should be noted that the procedure by 
which water vapour pressures and temperatures were 
obtained is equally valid for any other evaporating 
substance provided the kinetics of phase change reach 
equilibrium at an infinite rate. The only equation that 
must be altered is Eq (12). 

Results and discussion 

The analysis presented here was applied to calculate the 
rate of drying and the pressure build up for Israeli oil 
shales. Two sample sets of conditions were considered: 

(a) T O = 150°C, T~ = 20°C simulating predrying of shales. 
(b) T O = 500°C, T~ = 50°C simulating drying in a retort. 

The thermophysical properties, used in the calculations, 
and the results are given in Table 1. An average value for 
the location of the interface as a function of time is 
s=O.28(t) 1/2 for Set a and s=O.82(t) 1/2 for Set b, where s is 
in mm and t in seconds. 
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Table 1 Drying and pressure build-up of Israeli oil shales 

Set a Set b 

T O = 150°C T i = 20°C T o = 500°C T i = 50°C 
Po = 1 bar Po = 1 bar 

Conduc t i v i t y  rat io, K~ /K 2 1.0 1.0 

Di f fus iv i ty  ratio, e~/e= 1.086 1.086 

Init ial  moisture, ~ 0.5 0.10 0.15 0.05 0.10 0.15 

Permeabi l i ty parameter, H 5.16 10.3 15.5 5.16 10.3 15.5 

Porosity parameter, Q 0.569 1.13 1.70 0.516 1.03 1.547 

Interface Iocator, k 0.278 0.223 0.192 0.767 0.653 0.582 

Pressure bu lid-up, Ps/Po 1.33 1.40 1.44 2.34 2.74 2.97 

1.4 - - -  Compressible 
T O = 9 0 0  ~ ~ Incompressible 

1.2 ~ 
1.0 

,~ 0.8 ~ ~  
0.6 
0.4 
0.2 

I I I I 
iO -2 I0 -I I IO 10 2 

O.ilC~z 

Fig 1 Interface locator versus thermal diffusivity ratio for  
K1/K 2 = Q = H = 1 

Since the analysis may be applied to many other 
conditions a parametric study was carried out to obtain 
the interface locator 2, which determines the interface 
propagation rate, as a function of various thermo- 
physical properties and environmental parameters. Com- 
parisons between the compressible and incompressible 
results for the interface locator and the interface pressure 
of water vapour are given in Figs 1 to 8 for drying at an 
initial temperature Ti=50°C and ambient pressure 
Po = 1 bar. 

Figs 1 and 2 illustrate the influence of thermal 
diffusivity ratio ~x/~2 on 2 and Ps for vaious temperatures 
T O (all other non-dimensional parameters constant). Figs 
3 and 4 show the effects of the conductivity ratio K on 2 
and Ps. Figs 5 and 6 demonstrate the dependence of 2 and 
P, on the permeability parameter H for various external 
temperatures T o, and Figs 7 and 8 the interface locator 
and pressure dependence on the porosity parameter Q. 

Since a direct relationship exists between the 
interface pressure and the temperature (Eq (12)), Figs 2, 4, 
6 and 8 can also be used to obtain the interface 
temperature. 

Analysis of Figs 1, 3, 5 and 7, which show the 
dependence of the interface locator 2 on the various 
thermophysical parameters, indicate that: 

I T, . . . . .  \ '  Compressible 
_ ~ - . . ~  J ° -  ~ u u  - ' ' A  incompress ib le  ', 

,.61- \ Nb.  \ 
' ,o - - ;oo \. 

', 

 r,.4 

"'  XQ' 
,o= OO b', 

,o" , 
10 -z 10 -I I I0 I02 

C~ i/EZ2 

Fig 2 Interface pressure versus thermal diffusivity ratio 
for  KI/K2 = Q = H = 1 

2 .0  

1.6 

,-< 1.2 

0 .8  

0 .4  

o I I 
I0 -2 I0  -I I 

Compress ib le  
1 , ,  - - ~  Incompress ib le  

°'):N \ 

I0  I0  2 

KVKz 

Fig 3 Interface locator versus thermal conductivity ratio 
for  ~q/ct 2 = Q = H = 1 
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Fig 4 Interface pressure versus thermal conductivity ratio 

for c q / c t 2 = Q = H =  I 

~< 

1.0 - TO=900 

0 . 8 -  TO=500 

0 . 6 -  

TO: 200 
0.4 

0.2- 

Compressible 
q ~  Incompressible 

I I 1 I 
I0 -2 I0 -I I I0 10 2 

H 

Fig 5 Interface locator versus permeability parameter for 
cq/ot2 = K1/K2 = Q = 1 

(a) The values of the interface locator 2, vary between 
approximately 0.1 to 2.0 while the thermophysical para- 
meters vary substantially (between 10 -2 to 102). 
(b) The diffusivity ratio cq/ct 2 has a mild effect on 2. An 
increase of the ratio cq/0t 2 causes a decrease in 2. 
(c) The conductivity ratio K has the largest effect on 2. An 
increase in K causes a decrease in 2, since, for high K1 
values, the flux of heat into region 1 increases at the 
expense of the heat provided to evaporate the liquid. 
(d) The permeability factor H has little effect on 2 and its 

Drying of porous oil shales 

value remains practically constant for H<0 .1  (large 
permeabilities). This is accounted for by the small pressure 
build up resulting in a low interface temperature. 
(e) The porosity parameter Q has a similar effect on 2 to 
that of the diffusivity ratio ~1/~2. An increase of Q means a 
porosity increase which has a similar effect as an increase 
in the latent heat of the liquid. Thus larger Q is equivalent 
to larger amount  of heat needed to evaporate the liquid 
causing decrease in 2. 
(f) The incompressible solution proves to be a good 
approximation in predicting/l and just slightly under- 
estimates it. Thus, a conservative result for the interface 
progress can easily be obtained utilizing the simpler 
solution for incompressible vapour. 
(g) An increase of the external temperature, obviously, 
causes a higher rate of interface progress. 
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9.0 
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1 . 0 ~  - - - -  
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I I 

I I 
I t To = 900 

/ I TO= 5 0 0  

/ll' 2 
,,',,>,'/..) 

/ / 7 / . . / /  
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I0 -I I I0 10 2 

H 

Fig 6 Interface pressure versus permeability parameter 
for cq/~2 =K1/K2 = Q =  1 
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TO= 500 ~ . _  
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Fig 7 Interface locator versus porosity parameter for 
~1/~2 = Kx/K 2 = H = 1 
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Fig 8 Interface pressure versus porosity parameter for 
0~1/0~ 2 = K 1 / K 2  = H = 1 

Analysis of Figs 2, 4, 6 and 8 for the interface 
pressure, show that :  
(1) The parameters  Q, K and ~ only affect the pressure 
build up mildly. Values of these parameters  larger than I0 
result in almost  no pressure build up. 
(2) A large pressure build up can be created for values of H 
higher than unity (namely small permeabilities), as 
expected. 
(3) An increase of external temperature obviously causes 
an increase of pressure build-up. 
(4) Predictions of pressure build-up using the incom- 
pressible solution always result in substantial over- 
estimates, especially when the material is exposed to a 
high external temperature. 

The solution may be invalid for elevated tempera- 

tures and low permeabilities since a pressure build-up can 
result in material fracture. 

Cross et al assumed a pr ior i  the temperature 
difference, To-T~ at 20°C. In our  solution that is not  
necessary. Indeed, the Clapeyron equat ion provides the 
means to calculate the interface temperature.  F r o m  the 
results shown in Figs 2, 4, 6 and 8, the interface 
temperature can easily be derived. The temperature 
difference, T O - T~ may be as high as 750°C, for an external 
temperature of  900°C. Only  for very low external tem- 
peratures it could be of  the order  of 20°C. 

The results may deviate f rom the practical case on 
two counts:  
(i) the convect ion by the outflowing vapour  was neglected. 
(ii) a semi-infinite model  was assumed, rather than a slab 
or  a sphere. 
The first tends to reduce the pace of the moving interface, 
while the converse is true for the second. Fo r  low external 
temperatures,  below 200°C, the temperature variations 
within the particle do not  exceed 100°C. Thus the heat 
convected by the vapour  is relatively small. Under  these 
conditions the solution, as presented here, yields a lower 
bound  for the rate of drying. At higher external tempera- 
tures, further research is required to determine either 
lower or  upper  bound for the drying process. 
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